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We present a new algorithm to generate Special Quasirandom Structures (SQS), i.e., best periodic
supercell approximations to the true disordered state for a given number of atoms per supercell. The
method is based on a Monte Carlo simulated annealing loop with an objective function that seeks to
perfectly match the maximum number of correlation functions (as opposed to merely minimizing the
distance between the SQS correlation and the disordered state correlations for a pre-specified set of
correlations). The proposed method optimizes the shape of the supercell jointly with the occupation of
the atomic sites, thus ensuring that the configurational space searched is exhaustive and not biased by a
pre-specified supercell shape. The method has been implemented in the “mcsqs” code of the Alloy
Theoretic Automated Toolkit (ATAT) in the most general framework of multicomponent multisublattice
systems and in a way that minimizes the amount of input information the user needs to specify and that
allows for efficient parallelization.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The accurate and efficient modeling of disordered crystalline
alloys has a wide range of applications in materials science, as
many technologically important materials with tunable properties
take the form of disordered alloys. One popular, simple and
transparent approach is to merely take a large supercell and
randomly occupy each lattice site. However, this method is not
the most efficient, as randomly generated structures in a finite
supercell have a relatively large likelihood of deviating from
“perfect” randomness in terms of local correlations between the
chemical species occupation of nearby lattice sites. The concept of
Special Quasirandom Structures (SQS) [1] provides a systematic
improvement over this method. SQS represent the best periodic
supercell approximation to the true disordered state for a given
number of atoms per supercell. SQS are optimal according to the
criterion that a specified set of correlations between neighboring
site occupations in the SQS match the corresponding correlation of
the true, fully disordered, state.

SQS have been very successfully used to obtain electronic and
thermodynamic properties of disordered materials (see, for
ll rights reserved.

alle).
example, [2–8]). SQS are traditionally generated by an exhaustive
enumeration of all possible occupations of the sites in a supercell,
an algorithm of exponential order of complexity. This is the only
known method that is guaranteed to find optimal SQS, but it is
only computationally tractable for small unit cells (currently up to
about 25 atoms, even with the most efficient structure enumera-
tion algorithms [9]). However, electronic structure methods can
now routinely handle fairly large cells (e.g., over 50 atoms), thus
making exhaustive enumeration impractical. The generation of
SQS via stochastic approaches [5,10,11] thus becomes a desirable
alternative.

Our contribution is four fold. First, we devise an SQS generation
algorithm that seeks SQS that perfectly match the maximum
number of correlation functions (as opposed to merely minimizing
the distance between the SQS correlations and the disordered
state correlations for a pre-specified set of correlations). We
achieve this by generalizing the objective function traditionally
used for stochastic SQS searches to include a term that “rewards” a
perfect correlation match up to a given distance. Second, we
implement the method in the most general framework of
multicomponent multisublattice systems [12] in order to encom-
pass large classes of technologically relevant alloys (many of
which exhibit disorder on different sublattices [8]). Third, the
proposed method optimizes the shape of the supercell jointly
with the occupation of the atomic sites, thus ensuring that the
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configurational space searched is exhaustive and not biased by a
pre-specified supercell shape. Finally, we describe the implemen-
tation of this scheme in the Alloy Theoretic Automated Toolkit
(ATAT) [12–14], which is designed to minimize the amount of
input information the user needs to specify and exploits natural
avenues for efficient parallelization.

This paper is organized as follows: we first recall the basic
formalism needed to quantify spatial correlations in the disor-
dered state, we then describe the algorithm and provide sample
input and output from the ATAT implementation of the algorithm.
2. Cluster expansion formalism

Let us first briefly recall the cluster expansion formalism
generalized for multicomponent multisublattice systems [12]. Let
s denote the vector of all the variables si specifying the occupation
of lattice site i. Typically, si ¼ 0;…;Mi�1, if Mi distinct chemical
species can occupy site i. We then need a way to quantify the
correlation between the occupation of multiple sites i1, i2, etc.

The list of sites considered in the calculation of a particular
correlation is called a cluster, denoted α. In a binary system (where
each site only has one compositional degree of freedom) it is
sufficient to only specify which sites are part of the cluster (αi ¼ 1
if site i belongs to cluster α and αi ¼ 0 if not). In a multicomponent
system, each site i of the cluster is assigned a numerical index αi
ranging from 0 toMi�1 that indicates which compositional degree
of freedom is considered (with αi ¼ 0 indicating that this site is not
part of the cluster). The correlation associated with cluster α is
then defined as

ραðsÞ ≡ 〈Γα′ðsÞ〉α
where the average 〈⋯〉α is taken over all clusters α′ that are
equivalent by symmetry to cluster α and where Γα′ðsÞ is a cluster
function, defined as

ΓαðsÞ ¼∏
i
γαi ;Mi

ðsiÞ ð1Þ

where γαi ;Mi
ðsiÞ satisfies γ0;Mi

ðsiÞ ¼ 1 and the following orthogon-
ality condition:

1
Mi

∑
Mi�1

si ¼ 0
γαi ;Mi

ðsiÞγβi ;Mi
ðsiÞ ¼

1 if αi ¼ βi
0 otherwise:

�
ð2Þ

(In binary alloys, a common choice is γ0;2ð0Þ ¼ 1, γ0;2ð1Þ ¼ 1,
γ1;2ð0Þ ¼�1, γ1;2ð1Þ ¼ þ 1 and is directly related to the well-
known Ising model.) The convention used in ATAT for multi-
component systems is described in [12]. Although the product (1)
is, in principle, over all lattice sites, the choice γ0;Mi

ðsiÞ ¼ 1 ensures
that it reduces to a product over sites within cluster α only.
3. Algorithm

Our algorithm can be described as follows. Let ραðsrndÞ denote
the correlations of the fully disordered state at some given
composition while ραðsÞ denotes the correlations of a candidate
SQS s and let ΔραðsÞ ¼ ραðsÞ�ραðsrndÞ. Note that ραðsrndÞ can be
easily calculated from the fact that, in the disordered state, site
occupations are independent so that

ραðsrndÞ ¼ ∏
i
γα′i ;Mi

ðsiÞ
* +

α

¼∏
i
〈γα′i ;Mi

ðsiÞ〉α

where 〈γα′i ;Mi
ðsiÞ〉α can be directly computed from the average

composition of site i.
Our objective function (to be minimized) is

Q ¼�ωLþ ∑
α∈A

jΔραðsÞj ð3Þ

where
�
 L is the largest l such that ΔραðsÞ ¼ 0 for all clusters α with
diamðαÞ≤l (with diamðαÞ being the length of the largest pair
contained in cluster α);
�
 A is a user-specified set of clusters (which is typically much
bigger than the set for which we hope to match the correla-
tions exactly);
�
 ω is a user-specified weight.

The �ωL in the objective function (3) is an important distin-
guishing feature of our approach. It reflects the fact that the
quality of an SQS is traditionally measured in terms of the number
of correlations of the fully disordered state it is able to match
exactly. Typically, one attempts to preferably match shorter-range
correlations while gradually enlarging the supercell to extend the
range of matching correlations until convergence of the properties
of interest. Traditionally, SQS are built based on matching the pair
correlations, although for best accuracy, multibody correlations
should be considered as well. The second term in (3) adds the
absolute difference of the error in the remaining correlations and
serves to guide the stochastic search in the right direction to
extend the range of perfect match.

The objective function (3) is minimized using the following
steps.
1.
 All supercells having a user-specified number n of atoms per
cell are enumerated. (Since cell enumeration has polynomial
complexity (in n), an exhaustive enumeration is computation-
ally tractable.)
2.
 For each supercell, lattice sites are occupied randomly accord-
ing to the user-specified composition on each sublattice.
The algorithm proceeds by placing exactly nsxts atoms of
type t on sublattice s, where ns is the number of sites on
sublattice s in the supercell and xts is a user-specified composi-
tion. This is accomplished by randomly drawing one of the ns!

possible random permutations of the ns sites on sublattice s
and using it to shuffle the atomic occupations. (The code aborts
if nsxts is not an integer, since this would mean that even the
requested composition cannot be matched with the given
supercell size.)
3.
 Among each supercell thus obtained, the best SQS, according to
criterion (3), is identified. (All other supercells are also kept in
memory for future use.)
4.
 The objective function (3) is then used in a simulated annealing
loop in which configurations are sampled with a probability
proportional to expð�Q=TÞ, where T is a user-specified fictitious
temperature, using a Metropolis algorithm. At each step, the
algorithm attempts to jump to a random different supercell
shape and attempts to permute two atoms within the same
sublattice of that supercell. Such moves are accepted or rejected
based on the Metropolis algorithm.
5.
 The newly visited supercell and configuration is compared to
the best SQS obtained so far and the latter is updated if needed.
Every time a better SQS is found, it is output to disk.

The above algorithm can be easily parallelized: one simply
needs to run multiple, independent, instances of the code (ensur-
ing that the random number generators have a different seed),
letting them search different portions of configuration spaces and
keeping the best SQS generated among all of the processes.
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Although it is unlikely, the SQS thus generated may happen to
have a representation with smaller unit cell. As a result a search of
SQS of size n implicitly also searches for SQS whose size is a factor
of n. Another command of the ATAT package ðcellcvrt�s

obestsqs:outÞ allows the user to check if a smaller unit cell
exists.
4. Discussion

A few words of caution regarding the use of SQS are in order.
First, the accuracy of an SQS for the calculation of a given physical
property in a particular system is not only a function of the
number of correlations that match the correlations of the fully
disordered state. Different properties have difference dependences
on the correlations and this dependence is itself system-depen-
dent, as previously noted in [1,10,15]. Hence, one cannot know a
priori (based on purely geometrical grounds) how many (and
which) correlations need to be matched to reach a given accuracy.
It is therefore prudent to always investigate the convergence of the
property of interest over a sequence of different SQS of increasing
range of perfectly matched correlations.

This being said, there are fundamental theoretical reasons to
expect such convergence to occur relatively quickly for properties
such as the total energy. As is well-known in the field of so-called
“order N”methods, numerous physical arguments lead to localized
expansions of the total energy [16]. Such expansions naturally
suggest a cluster hierarchy [13] in which smaller clusters (both in
terms of spatial extend and number sites) tend to be more
important. A rapid convergence is not automatic for any physical
property, however. In extreme cases, properties such as the band
gap or electrical conductivity may have a strong dependence on
long-wavelength components that would result in SQS having
poor predictive power.

Another potential problem with SQS lies in the prediction of
tensor-valued properties such as elastic constants. An apparently
good SQS for scalar properties may turn out to generate artificially
anisotropic tensorial properties [17]. This problem arise because
the coupling between correlations and properties follows different
symmetry equivalence rules than in the scalar case [18]. Fortu-
nately, this issue can easily be corrected by a symmetrization
technique [19,17].
5. Code usage

5.1. Input files

In the description below, quantities in square brackets “[ ]”
need to be replaced by the appropriate value, without brackets,
while items not in bracket are literal. The mcsqs code requires
2 input files.

First, a file defining the random state (by default rndstr.in,
which can be overridden with the -l¼[filename] option) is
needed. Its format is as follows (it is similar to ATAT's lat.in file
Table 1
Sample input file (for an Al–Ti alloy with 25 atomic % Al and adopting the h
SQS compositon desired.

3.1 3.1 5.062 90 90 120

1 0 0

0 1 0

0 0 1

0 0 0 Al¼0.25, Ti¼0.75

0.6666 0.3333 0.5 Al¼0.25, Ti¼0.75
that is needed for maps or corrdump but with partial occupation
of the sites):
1.
cp c
First, the coordinate system a!, b
!

, c! is specified, either as

½a� ½b� ½c� ½α� ½β� ½γ� ð4Þ
or in terms of Cartesian coordinates, one axis per line:

½ax� ½ay� ½az�
½bx� ½by� ½bz�
½cx� ½cy� ½cz�

ð5Þ
2.
 Then the lattice vectors u!; v!; w! are listed, one per line,
expressed in the coordinate system just defined:

½ua� ½ub� ½uc�
½va� ½vb� ½vc�
½wa� ½wb� ½wc�

ð6Þ
3.
 Finally, the positions xi of the crystallographic sites (expressed
in the same coordinate system as the lattice vectors) are given,
along with possible atom type(s) t1i; t2i;… occupying site i and
the corresponding occupations (or concentration) c1i; c2i;…:

½xa1� ½xb1� ½xc1� ½t11 ¼ c11; t21 ¼ c21…�
½xa2� ½xb2� ½xc2� ½t12 ¼ c12; t22 ¼ c22;…�
⋮ ⋮ ⋮ ⋮

Note that the concentrations must sum up to 1 for each site. An
example of such file is given in Table 1. All symmetry equiva-
lent sites must also have the same occupations. To override this
requirement, “dummy” species (with zero occupation) that
differ in the two sublattices must be included.

The second required input file (by default clusters.out, but
this can be overridden with the -cf¼[filename] option) indi-
cates the clusters that the code must consider in attempting to
match the disordered state's correlations. This file can be gener-
ated with the corrdump utility, for instance with the command
line:

corrdump -l¼rndstr.in -ro -noe -nop -clus -2¼...

-3¼...

The (new) -ro option allows corrdump to read the same
lattice input file as mcsqs (here rndstr.in). The -noe and -nop

skip the empty and point clusters that are not used by mcsqs. The
-clus option instructs the code to generate clusters only. Finally,
the options -2¼... -3¼... indicate the range of pairs, triplets,
etc. More information can be found by typing corrdump -h.

The following input files are optional.
�
 Creating a file called sqsparam.in (or as specified by the
-pf¼[filename] option) provides a way to set the two
parameters controlling the optimization process: (i) the weight
ω in Eq. (3) and (ii) the “temperature” T used in the simulated
rystal structure) defining the geometry of the lattice and the

(Coordinate system: a b c α β γ notation)
(Primitive unit cell: one vector per line
expressed in multiples of the above coordinate
system vectors)
(Atoms in the lattice)
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annealing loop. This file just contains two numbers

½ω� ½T� ð7Þ
and can be changed while the code is running to fine-tune
performances at run-time. This file is reread every rt Monte
Carlo steps, as set by the -rt¼[rt] option.
�
 Creating a file called stopsqs stops the code cleanly.

�
 If the -rc option is set, the file sqscell.out is read in to

specify which supercells are to be considered. Normally (with-
out the -rc option), the sqscell.out is generated automa-
tically by the code via exhaustive enumeration. The file starts
with the number ns of supercells and is followed by a list of the
ns supercells in the format described by Eq. (6) above. This
option is useful in two cases: (i) if the code needs to be rerun
multiple times (or run in parallel), this saves the supercell
generation time or (ii) if brute force enumeration takes too
long, a few specific supercells can be given.
Table 2
Sample input file (for a disordered Re–W alloy adopting a D8b crystal structure)
defining the geometry of the lattice and the SQS compositon desired. For clarity, the
5 symmetrically distinct sublattices are separated by blank lines.

10.759 10.759 5.656 90 90 90

1 0 0

0 1 0

0 0 1

0.000 0.000 0.500 Re

0.500 0.500 0.000 Re

0.561 0.235 0.000 Re

0.235 0.561 0.000 Re

-0.235 -0.561 0.000 Re

-0.561 -0.235 0.000 Re

1.061 0.265 -0.500 Re

0.265 1.061 -0.500 Re

0.735 -0.061 -0.500 Re

-0.061 0.735 -0.500 Re

0.103 0.103 0.000 W

-0.103 -0.103 0.000 W

0.603 0.397 -0.500 W

0.397 0.603 -0.500 W

0.318 0.318 0.730 Re¼.5, W¼.5

-0.318 -0.318 0.730 Re¼.5, W¼.5

0.318 0.318 0.270 Re¼.5, W¼.5

-0.318 -0.318 0.270 Re¼.5, W¼.5

0.818 0.182 0.230 Re¼.5, W¼.5

0.182 0.818 0.230 Re¼.5, W¼.5

0.818 0.182 -0.230 Re¼.5, W¼.5

0.182 0.818 -0.230 Re¼.5, W¼.5

0.367 0.038 0.000 Re¼.5, W¼.5

0.038 0.367 0.000 Re¼.5, W¼.5

-0.038 -0.367 0.000 Re¼.5, W¼.5

-0.367 -0.038 0.000 Re¼.5, W¼.5

0.867 0.462 -0.500 Re¼.5, W¼.5

0.462 0.867 -0.500 Re¼.5, W¼.5

0.538 0.133 -0.500 Re¼.5, W¼.5

0.133 0.538 -0.500 Re¼.5, W¼.5
5.2. Command line options

The command is invoked as mcsqs [options], where the
options are one or more of the following.

-n¼[int] Specifies the desired number of atom/unit cell (must be a
multiple of the number of sites in the rndstr.in). This
is the only required command-line parameter.

-l¼[string] Input file defining the random structure (default:
rndstr.in)

-cf¼[string] Input file defining the clusters (default: clusters.
out)

-tol¼[real] Tolerance for matching correlations of the SQS and of
the ideal random state (default: 1e�3). Values of jΔραðsÞj
below that threshold are considered to be 0, for the
purpose of evaluating Eq. (3).

-wr¼[real] Weight (ω in Eq. (3)) assigned to the range of perfect
correlation match in the objective function (default: 1).

-T¼[real]Temperature T used in the simulated annealing loop of
the Monte Carlo (default: 1).

-pf¼[string] Specify the name of the input file defining the
optimization parameters (default: sqsparam.in). The
file (whose format is described in Eq. (7) above) is always
attempted to be read (whether the -pf option is speci-
fied or not) and, if present, the settings found in this file
override those given by the -wr and �T options.

-rc Read supercells from file sqscell.out. If not specified,
the code generates the supercells internally and writes
them to sqscell.out.

-ip¼[int]Specifies the index i of current process (for parallel
operation). One can independently run any number of
instances of the code. This index is used as a suffix on the
various output files, so that if the instances run in the
same directory, no file clashes occur. It is the user's
responsibility to find the best SQS among those generated
by the different processes (this is straightforward, since
the bestcorr[i].out files give the best value of the
objective function found so far by process i). Just type
grep Objective_function bestcorrn:outjsort�n.

-crf¼[string] Select correlation functions (default: trigo, a con-
vention described in [12]). See file corrskel.c++ for
instructions regarding how to add user-defined correla-
tion functions.

-sd¼[int] Seed for random number generation (default: use
clock).

-rt¼[int] Read parameter file (sqsparam.in) every time these
many Monte Carlo steps have been performed
(default:10 000).
-sig¼[int] Number of significant digits to print in output files
(default: 6).

-h Displays more help
5.3. Output files

The bestsqs.out file (or bestsqs[i].out in parallel mode,
where i is the index specified by the -ip option) contains the best
SQS found so far in standard ATAT structure file format (which is
similar to that shown in Table 1, but with only one specie per site
and without occupation variables). See Table 3 for an example.

The bestcorr.out file (or bestcorr[i].out in parallel
mode) contains the correlations of the best SQS found so far
(3rd column), along with the target disordered state correlation
(4th column), and the difference between the two (5th column).
Each correlation is prefixed by characteristics of the corresponding
cluster: its number of point (1st column) and its diameter (2nd
column).

A file called rndstrgrp.out contains the same information as
the input file defining the random state (e.g., rndstr.in), but
with symmetrically equivalent sites grouped together and sepa-
rated by blank lines. This helps to determine which sites can have
the same occupations. This file can be used as an input file in a
later run.

A log file with miscellaneous self-explanatory information can
be found in mcsqs.log (or mcsqs[i].log in parallel mode).

The code stops if a perfect match is found (all correlations
requested match the disordered state), but this may never happen



Table 3
Sample SQS for a disordered Re–W alloy adopting a D8b crystal structure.

10.759 0.000 0.000

0.000 10.759 0.000

0.000 0.000 5.656

0.000 -1.000 0.000

1.000 0.000 0.000

0.000 0.000 2.000

0.318 -0.682 0.730 W

0.318 -0.682 1.730 W

0.318 -0.682 1.270 Re

0.318 -0.682 0.270 W

0.682 -0.318 0.730 Re

0.682 -0.318 1.730 W

0.682 -0.318 1.270 W

0.682 -0.318 0.270 W

0.818 -0.818 0.230 Re

0.818 -0.818 1.230 Re

0.818 -0.818 0.770 Re

0.818 -0.818 1.770 W

0.182 -0.182 0.230 W

0.182 -0.182 1.230 Re

0.182 -0.182 0.770 Re

0.182 -0.182 1.770 Re

0.038 -0.633 2.000 W

0.038 -0.633 1.000 Re

0.367 -0.962 2.000 W

0.367 -0.962 1.000 W

0.633 -0.038 2.000 Re

0.633 -0.038 1.000 W

0.962 -0.367 2.000 Re

0.962 -0.367 1.000 Re

0.538 -0.867 1.500 Re

0.538 -0.867 0.500 W

0.867 -0.538 1.500 W

0.867 -0.538 0.500 W

0.133 -0.462 1.500 Re

0.133 -0.462 0.500 Re

0.462 -0.133 1.500 Re

0.462 -0.133 0.500 W

1.000 -1.000 0.500 Re

1.000 -1.000 1.500 Re

0.500 -0.500 2.000 Re

0.500 -0.500 1.000 Re

0.103 -0.897 2.000 W

0.103 -0.897 1.000 W

0.897 -0.103 2.000 W

0.897 -0.103 1.000 W

0.603 -0.603 1.500 W

0.603 -0.603 0.500 W

0.397 -0.397 1.500 W

0.397 -0.397 0.500 W

0.235 -0.439 2.000 Re

0.235 -0.439 1.000 Re

0.561 -0.765 2.000 Re

0.561 -0.765 1.000 Re

0.439 -0.235 2.000 Re

0.439 -0.235 1.000 Re

0.765 -0.561 2.000 Re

0.765 -0.561 1.000 Re

0.735 -0.061 1.500 Re

0.735 -0.061 0.500 Re

0.061 -0.735 1.500 Re

0.061 -0.735 0.500 Re

0.939 -0.265 1.500 Re

0.939 -0.265 0.500 Re

0.265 -0.939 1.500 Re

0.265 -0.939 0.500 Re

Fig. 1. Graphical representation of the SQS given in Table 3.
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if there are too many clusters in clusters.out or -n (the number of
atoms) is too small. In any case, the bestsqs.out and bestcorr.out
always contain the best solution found so far. Stopping the code
prematurely (by typing touch stopsqs), if the solution is
satisfactory, poses no problem.
6. Example

As an example of non-trivial SQS, we consider a disordered
s�Fe–Cr (D8b) structure, which has a 30-atom unit cell and
5 symmetrically distinct sublattices [20,21]. This structure is relevant
to the study of magnetic Fe–Cr alloys [22] as well as a number of
high-temperature Re alloys [21], such as the Re–Walloy we consider
below. We follow the prescription of Table 1 in [20] to determine
likely occupations of the sites (they classify the 5 distinct sublattices
into 3 sublattices, each sharing the same number of nearest
neighbors). The two sublattices with the smallest coordination
number (12) are fully occupied with Re while the sublattice with
the largest coordination number (15) is fully occupied with W. The
remaining two sublattices, with an intermediate number of nearest
neighbors (14), are modeled as fully disordered with a composition
of 50%. The appropriate rndstr.in input file is shown in Table 2
and the following command was used to generate the clusters:

corrdump -l¼rndstr.in -ro -noe -nop -clus -2¼6

-3¼5.2 -4¼5.2

This generated 15 pairs, 8 triplets and 3 quadruplets (in
addition to the 2 point correlations). The SQS generation code
was then simply run as

mcsqs -n¼60

The resulting SQS is shown in Table 3 and Fig. 1. As seen in
Table 4, its correlations exactly reproduce those of the disordered
state over a range that corresponds to about 1.5 times the nearest
neighbor shell radius (about 3.32–3.61 Å in this system).
7. Conclusion

The mcsqs code presented herein should prove especially
useful in CALPHAD-type modeling since SQS provide a direct and
an efficient way to obtain the enthalpy of mixing of a solid solution
in the high-temperature limit. The current implementation is
somewhat unique in terms of its ease-of-use and generality, which
should greatly facilitate the use of ab initio data in CALPHAD
modeling.



Table 4
Correlations of the SQS given in Table 3. For a given cluster α, let nα be the number of sites it contains, let lα be its diameter, let mα be its multiplicity and let ρα be its
associated correlation. (A perfectly random state would have correlations that are all zeros in this case.) Italicized correlations were not included in the objective function.
Sublat. indicates which sublattices (in the order listed in Table 2) a given cluster overlaps.

nα lα mα Sublat. ρα nα lα mα Sublat. ρα

2 2.60176 4 44 0 3 3.35509 8 445 0
2 2.97641 4 55 0 3 3.41838 8 445 0
2 3.05424 4 44 0 3 3.52521 16 555 0.25
2 3.35509 16 45 0 3 3.52521 16 545 0
2 3.41838 16 54 0 3 5.00591 8 545 0
2 3.52521 16 55 0 3 5.13818 16 445 0
2 5.00591 4 55 0 3 5.13818 16 455 0
2 5.13818 16 45 0 3 5.13818 8 554 0
2 5.25714 16 45 0 3 5.25714 8 445 0
2 5.33746 16 45 0 3 5.25714 16 455 0
2 5.34148 16 54 0 3 5.25714 16 554 �0.25
2 5.53845 4 44 0 3 5.25714 16 554 0.25
2 5.57954 16 44 0
2 5.656 8 44 0 4 3.52521 4 5555 0
2 5.656 8 55 0 4 5.13818 16 4455 0
2 6.11912 4 44 0.5 4 5.13818 8 4455 0
2 6.16229 4 55 �0.5 4 5.25714 8 4455 0.5

4 5.25714 16 4455 0.25
4 5.25714 16 5554 0.25
4 5.25714 16 5554 0
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